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Abstract
Hyperspectral imaging produces datasets that have three di-

mensions: two spatial and one spectral. The spectral dimension
typically contains on the order of 200 contiguous bands with spec-
tral resolution on the order of 10 nm, sufficient to perform spectro-
scopic analysis of the surface. The tradeoff for the high spectral
resolution is generally lower spatial resolution resulting in “mixed”
pixels. Classification of the imaged surface based on the pixel spec-
tral characteristics into categories such as “urban”, “vegetation”,
“agricultural”, and “water” is a common use for such imagery
and methods to produce a classification map with a single class as-
signment per pixel exist. Here, we present a geometrical model of
the high-dimensional data in conjunction with a stepwise un-mixing
process to produce not a single class map, but a cube of per-pixel
class abundances. The method is applied to data taken with the
Hyperion sensor on board the EO-1 satellite. End member spectra
representing pure materials are first derived from the scene. These
are then used in a stepwise regression to find the “best” linear mix-
ture model on a per-pixel basis. Once each pixel is modeled, re-
dundant end member spectra are combined into a subset of classes.
The computed mixing fractions are used to “partially classify” each
pixel (e.g., 75% class 1 and 25% class 3). Given a classification
map where each pixel can be represented by several classes based
on the fractions, questions of how to optimally visualize these data
arise. Some initial initiatives into this problem are also discussed.

Introduction
Classification of airborne and space-based imagery into well-

defined land classes is a common objective of the remote sensing
community. This classification is based on the spectral characteris-
tics of the measured pixel radiances. Typical land classes include
general categories such as “urban”, “vegetation”, “agricultural”, or
“water”. Other classification schemes seek to answer questions
such as trafficability or arability. Hyperspectral sensors are well-
suited for such an application as the spectral content of the retrieved
pixel contains unique information about the material through its re-
flectance properties. Hyperspectral sensors in the reflective portion
of the EM spectrum typically have ∼200 spectral channels ranging
from the visible to the near infrared (0.35 to 2.4 µm) with a spectral
resolution of ∼10 nm. Observations can be complicated, though, by
the presence of the intervening atmosphere for airborne and space-
based observations, thus complicating the exploitation tasks. As a
trade-off for the high spectral resolution of these sensors, the pixel
sizes are typically large. Space-based systems have ground sample
distances (GSD) on the order of 30 m; airborne systems can have
pixel sizes on the order of 2 - 20 m, depending on sensor specifics
and collection geometries. Such large pixel sizes result in “mixed”
pixels due to the spatial varibility of materials providing few uniform

regions at these scales.
Several classification schemes have been developed for both

multispectral imagery (containing ∼10 - 20 spectral bands) and hy-
perspectral imagery[1, 2, 3]. These fall into two categories: super-
vised and unsupervised. The former method requires the analyst to
identify training regions for each class anticipated to be in the im-
age. Each pixel under test is then compared (in a statistical sense) to
the pre-defined class training regions to identify the class to which
it most likely belongs. Unsupervised methods use little or no inter-
vention on the part of the analyst, instead relying solely on the scene
content to classify each pixel. Usually, the number of classes into
which the scene is to be classified is pre-determined. A common
method is the k-means, or moving means, method[4]. The number
of classes is pre-determined, and the means of those classes are ini-
tially randomly chosen. All pixels are classified based on a distance
measure from the class means, and new means are then computed.
The process iterates until there is little or no change in the classifi-
cations. All methods have in common the use of the spectral content
of the pixel under test.

Here, an unsupervised method is presented that uses scene-
derived end member spectra (assumed to represent pure, distinct ma-
terials) in a geometrical model of the data space. These end member
spectra are then used in an iterative regression method to model each
pixel with the most appropriate end members and thus, classify each
pixel. The approach uses a linear mixing model[5] combining end
member spectra to model each measured pixel spectrum. As a result,
the mixing fractions, or abundances, of the particular end member
spectra used to model each pixel are reported relating the contents
of the pixel to user-identified classes.

This paper is organized in the following manner. First, the algo-
rithm is described, giving details about the identification of the end
member spectra from the scene, the regression approach, and the
pixel classification method. Next, the test data are presented. Re-
sults from the classification scheme are shown and issues regarding
the visualization of such results are presented. Finally, a summary
of the work concludes the paper.

Algorithm Description
End Member Selection

Hyperspectral imagery can be modeled in a geometric sense by
treating every pixel spectrum as a vector in an n dimensional space,
where n is the number of spectral bands in the sensor. Every pixel in
the image is assumed to be a linear mixture of pure component spec-
tra associated with the materials in the image. These pure compo-
nent spectra, called end members, can be derived from the image in
several ways. Most simply, a user can visually identify “pure” pixels
and extract those spectra. Automated methods exist for end member
extraction as well[6]. The method used here is termed MaxD and is



based on the concept that hyperspectral data lie within a convex hull
in the n-dimensional space[7]. Given this shape of the data cloud,
each interior point in the cloud can be modeled by a linear combina-
tion of the spectra at the corners of the simplex enclosing the data.
These vectors can be shown to span the n-dimensional space.

The algorithm uses geometrical projections within the n-
dimensional space to determine the corners of the simplex. Each
pixel spectrum within the image is treated as a vector in the space.
The points with the largest and smallest Euclidean magnitudes are
identified as the first two end members. All the data are subsequently
projected along the vector between these two points. This operation
not only places the two end members “on top of” each other, but also
retains all corners in the simplex as corners. Now, the data point (in
the newly projected space) that is furthest from the point occupied
by the first two end members is considered the third end member,
and all data are projected along the vector connecting the first two
spectra (now a single point) and the new extreme. This process is it-
erated until as many end members as desired are extracted from the
scene. The scheme is automated requiring the user to supply only a
stopping point. These end members are then used in the regression
scheme, described below, to model each pixel in the scene.

Stepwise Regression
If we assume that each pixel in the scene is a linear combination

of the end members representing the pure materials (i.e., classes),
then all that remains is to determine “how much” of each end mem-
ber is in a particular pixel. This is commonly done using a linear
mixing model,

L(λ ) �
N

∑
i=1

αiL̂i(λ ). (1)

Here, L(λ ) is the test pixel spectrum to be modeled (here in radi-
ance space, but possibly in reflectance space if the image has been
atmospherically-compensated), L̂i(λ ) are the end member spectra
previously determined, and αi are the mixing fractions. Given the
end members, this model is simple to fit using a least squares regres-
sion returning the mixing fractions αi for all end members in the
set.

For high-altitude airborne and space-based hyperspectral im-
agery with large collection areas, it is not reasonable to assume that
every end member, or material class, will be present in every pixel
in the scene. A more physical model of the individual pixel would
choose which end members are in that pixel, and exclude all others
from the final fitting process. To achieve this, a stepwise regres-
sion technique has been implemented using an Analysis of Variance
(ANOVA) metric to determine which set of end members best rep-
resents each pixel on a per-pixel basis.

In this method, each pixel is modeled first using each end mem-
ber individually. The single end member that achieves the best fit to
the measured pixel spectrum is kept in the model. Then, every two-
spectra combination of that first end member and every other end
member is used to model the measured pixel spectrum. The best
combination of two end members is then kept in the model. This
process is continued to include a third end member. However, be-
cause the combination of just the second and third end members has
not been tested, the first end member is removed from the model and
a determination is made whether a better fit is achieved with just end
members two and three. At each point in the process, the determi-

nation of whether the model is improved by the addition / subtrac-
tion of an end member is made using an ANOVA calculation and an
f-test. The process continues testing (almost) all possible combina-
tions of end members. Ultimately, each pixel is modeled with the
“best” set of end member spectra from the original set. The Linear
Mixture Model (equation 1) is used to fit that pixel and the mixing
fractions are determined. For those end members not included in the
final model for the test pixel, the mixing fractions are set to zero.
The solution for the mixing fractions is partially constrained such
that αi ≥ 0, but they do not have to sum to one.

Classification Scheme
Once each pixel has been fit with a model of appropriate end

member spectra, the computed mixing fractions can be used to clas-
sify the pixels. First, however, because the end member extraction
scheme is unsupervised, the end members themselves must be col-
lapsed into a subset of classes. As it is difficult to determine a priori
exactly how many classes are contained in a particular scene, there
can be redundancy in the end members selected. For this work,
twenty end members were derived from the scene originally, and
these were reduced into eight classes. A new class map was de-
rived with the final eight classes and fractions for each class were
computed by summing the mixing fractions from the original end
member fits appropriately (e.g., if end members 3, 5, & 8 were as-
signed to class #1, the mixing fractions from those three classes were
summed and assigned as the mixing fraction for class #1). The re-
sulting eight classes were assigned names based on visual inspection
and scene context of the pixels assigned to that class.

Test Data
Data for this experiment were taken with the Hyperion sen-

sor on board NASA’s EO-1 satellite[8]. An image of the Rochester
metropolitan area was collected in June of 2004. A subset of the
entire collection was extracted for use in this work. The subset is
of an agricultural area south of Rochester, and includes some small
cities as well as part of a large lake (Conesus Lake, part of the Fin-
ger Lakes). The Hyperion sensor has 256 spectral channels ranging
from 0.35 µm to 2.5 µm. Several channels were removed from the
data prior to processing due to sensor noise and atmospheric absorp-
tion bands. The final cube contained 145 spectral bands and was
256 samples wide by 500 lines long. With a GSD of 30 m the cube
covers an area approximately 15 km long by 7.7 km wide. An RGB
image of the scene is shown in Figure 1.

Results

Class names associated to the classification results. Classes 1-8
are associated to Figures 2(a) - (h).

Class # Class Name
1 agricultural - green
2 agricultural - brown
3 agricultural - other
4 forest
5 urban
6 water
7 soil
8 other



Results from the classification scheme are shown in Figure 2.
A gray-scale image is shown for each of the final eight classes, with
brightness corresponding to higher mixing fraction for that classes.
Class names associated with the eight classes are shown in Table 1.
The first three of the eight classes into which the scene has been
classified are all “agricultural” classes of different visual color (Fig-
ure 2(a) - (c)). The primary distinction is between the “green” agri-
cultural fields and the “brown” fields. The image was taken in June,
so the supposition is that the “brown” fields are fallow. The “agricul-
tural - other” represents crops that were of a different visible color.
These tended to be brighter and slightly more red in the visible im-
age.

The fourth class (Figure 2(d)) represents the “forest” class.
This class is hardly separable from the green agricultural class. This
is not unexpected as the green trees are spectrally similar to green
crops, particularly at this spatial resolution. The class was named as
forest, though, due to the successful classification of the large forest
region in the middle left portion of the image. This area is noticeably
absent in the mixing fraction maps for all other classes.

Likewise, the “urban” class shown in Figure 2(e) is similar to
several areas of the bare soil class (class #7, Figure 2(g)). This class
does clearly define the roadways that run through the image, as well
as the small urban areas in the upper left corner of the image and
at the north end of the lake. Additionally, built-up areas along the
shore of the large lake in the lower right corner of the image are
highlighted in this class.

Class 6, the “water” class (Figure 2(f)) very dramatically high-
lights the lake, as well as several smaller bodies of water in the scene.
However, because the water represents the “darkest” class in the im-
age, several other dark portions of the image that appear to be agri-
cultural in nature are highlighted with smaller abundance. These
could be recently watered fields, which would exhibit the spectral
characteristics of water, or simply materials with a lower overall re-
flectance.

Class 7 is the “soil” class (shown in Figure 2(g)) and, as men-

Figure 1. RGB image of the Hyperion data used.

tioned above, exhibits much of the same spatial structure (except for
the roadways) as the urban class. This class spatially exhibits struc-
tures associated to the agricultural fields as well. This is a reflection
of the fact that at these spatial resolutions (i.e., pixel sizes of 30 m),
it is possible that for some crops we are seeing the soil in between
the individual plants, thus creating mixed pixels.

Class 8 is the “other” class (Figure 2(h)). Here it mostly con-
tains spectral anomalies within the scene, as well as sensor artifacts.

Visualization of High-Dimensional Data Products
While it is possible to assign a single class to each pixel in

this imagery, and imagery like it, at these spatial resolutions (GSD

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 2. Results from classifying the image into eight classes. Images are for

classes 1-8, figures (a) - (h), respectively. Please refer to Table 1 for the class

identifications. Figure 1 is shown again for comparison (i).



� 30 m) material continuity is not guaranteed, and a more spatially
accurate classification scheme may be necessary. A technique that
provides a fractional classification is useful for such circumstances,
particularly in transition regions. Unfortunately, this creates a prob-
lem for the visualization of the data. Given a single classification per
pixel, a simple scheme can be used to demonstrate a large number
of classes. When each pixel can have a fractional abundance of each
class, it becomes difficult to portray effectively the information on
a simple display as the data become more “high-dimensional.” Re-
search into this topic is underway[9] attempting to develop methods
of visualization based on the information content in the scene. Initial
work indicates that methods such as Principle Components Analysis
and Independent Components Analysis can be used to reduce the di-
mensionality of such data products. The reduced-dimension data are
then mapped into various color spaces for presentation of the final
classification results.

Summary

A method has been presented that uses scene-derived end mem-
bers, derived from a geometrical model, in a stepwise regression to
fit a linear mixing model to each pixel. The mixing fractions result-
ing from this regression are used as fractional classifications after
consolidation of the end member spectra into user-defined classes.
This techniques has been applied to a data set collected by the Hype-
rion sensor on the NASA EO-1 satellite. The area under investiga-
tion is an agricultural area and was classified into eight classes. Each
pixel has a fractional abundance associated to each class allowing
for many class assignments. This presents a significant visualization
problem. Several methods are under investigation as to how “best”
to represent such high-dimensional data.
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